ADDENDUM TO THE LAST CHAPTER OF
MY BOOK CALCULI DIFFERENTIALIS ON
INEXPLICABLE FUNCTIONS

Leonhard Euler

§1 Since this subject, completely new in Analysis, was not covered very
satisfactory until now, I decided to treat the same here in much more detail and
derive all the fundamentals, upon which it is founded, from first principles;
here, it will be especially convenient to have introduced appropriate signs and
notations in order to simplify the calculations. So, if an arbitrary series was
propounded, I will represent its terms corresponding to the indices 1, 2, 3,
4 etc. by these signs (1), (2), (3), (4) etc. and hence the general term of this
series corresponding to the indefinite index x will be (x) for me; therefore, for
each series that symbol will be a certain function of x, which I assume to be
known completely; by this I mean that its values can not only be exhibited
for integer numbers assumed for x but also for fractional numbers and even
surdic' ones.

§2 Further, let ¥ : x denote the summatory term of the same series, which
expresses the sum of all terms from the first up to the term (x) so that it is

Seix=(1)+(2)+ )+ @) +...+ (x);
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therefore it is possible to exhibit all of its values, as often as x was a positive
integer number, using the series itself, since it will be as follows

MMMM
= W N =
Il

But hence it is not clear by any means values of which kind the same for-
mula ¥ : x will obtain, if fractional or even surdic values, either positive or
negative, are attributed to x; hence I refer these values to a peculiar kind of
functions, which I called inexplicable in my book. Therefore, here I will especi-
ally investigate, how such functions can be expressed by means of analytic
formulas.

§3 Therefore, the whole task can be completed in the most convenient way
by continued differences derived from the propounded series, where any
arbitrary term is subtracted from the following; having done this the series
of first differences results, whence in the same way the second, third, fourth
etc. differences will be formed. But I will indicate all these differences by the
following characters

L. Differences | Il Differences | III. Differences
2) — (1) = A1 | A2 — A1 = A1 | A2 - A’1 = A31
3) = (2) =A2 | A3— A2 =A%2 | A?3— A2 =732
)
)

—(3) = A3 | A4 — A3 = A3 | A?4 — A?3 = A3 | etc.
5) — (4) = Ad | A5 — Ad = A?4 | A’5 — A?4 = N34

etc. etc. etc.

§4 Having defined these characters one will be able to express the single
terms of the series using only the first, (1), and its differences A1, A?1, A1,
A*1 etc. For, because it is



(2) = (1) +A1 and A2 = A1+ A%,
because of (3) = (2) + A2 it will be

(3) = (1) +2A1 + A%1.

Hence this equality follows

A3 = A1 +2A%1 + A%1.

Since now itis (4) = (3) + A3, we will have

(4) = (1) +3A1 + 3A%1 + A%1;

hence, further it is

A4 = A1+43A%1+3A%1 + A%
Because of (5) = (4) + A4 it will be

(5) = (1) +4A1 + 6A%1 +4A%1 + A*1

and so forth. From the formation of these series itself it is manifest that here
the binomial coefficients of (1 + x)"~! occur. So, it will be

B n—1 n—-1 n-2, n—-1 n-2 n-3
(n)=(1)+ 1 Al + T 2A1+ 1 2 3

A%1 + etc.
§5 If we now augment this number n by the 1, we will have

n—1 n—-2

2 3

n n n—1
(n+1)=(1)+ A1+ —-

A31 .
1 1 5 + etc

n
A1+ = .
T

Since now this last expression exhibits the term corresponding to the index
n+1, in like manner the term corresponding to the index (n 4 2) is determined
by the second and its differences; for, it will be

n—1 n-2

2 3

—1
(n+2) =)+ 2n+ 2.2

A32 )
1 1 5 + etc

n
A2 + — .
1



The same way it is evident that it will be

n n n—1

n
= - —. A3+ — . - A3 tc.,
(n+3) (3)+1A3+1 7 3+1 5 3 3 +etc
n n n—1 n n—1 n-2
_ n n. A23 4 . : A%4 + etc.
(n+4) (4)+1A4+1 5 t1 3 3 + etc
etc.

§6 Therefore, hence it is plain that the general term of our series (x) itself is
defined by the first and its differences this way

x—1 x—1 x—2 x—1 x—2 x-—3
(x) = (1) + A1+ : A1+ :

: A31 .
1 1 2 1 2 3 +ete.,

whence the term following the last, (x + 1), will obviously be

x—1 x—2

3 .
5 3 AN°1 + etc.;

X x x—1

X
A1+ = -
1

since this expression occurs very frequently in the following, for the sake of
brevity let us introduce the following characters:

IR PR PR PR
N

etc.,

having used these we will find the following equation:



(x+1) = (1) +xA1 +x'A%1 + x"A%1 +etc,
(x+2) = (2) +xA2 + x'A%2 + x"A%2 + etc.,
(x43) = (3) +xA3 +x'A%3 + x"A%3 +etc,,
(x +4) = (4) +xAM +x'A%4 + X"N%4 + etc,

(x+n) = (n) +xAn+x'Nn+x"An + etc.

§7 Furthermore, one will also be able to determine the sum of an arbitrary
number of terms of our series using the first term and its differences, as the
following table shows.

*:1 = (1)
add. (2) = (1) + Al
$:2 = 2(1) + Al
B) = (1) + 2A1 + A*
£:3 = 3(1) + 3A1 + A%
(4) = (1) + 3A1 + 3A21 + A%
T:4 = 4(1) + 6A1 + 4A’1 + A1
(5) = (1) + 4A1 + 6A%1 + 4A%1 + A%
£:5 = 5(1) 4+ 10A1 + 10A%1 + 5A%1 + A%l

etc.

Here, it is again evident that the coefficients are the same as those which occur
in the power of the binomial of the same order.



§8 Therefore, having used the characters introduced before we will also be
able to express the summatory term of our series X : x; for, it will be

Yox=x(1) + A1+ x"A%1+ ¥ A% + etc;

this form is of such a nature that for x one can not only take integer numbers
but also fractions and even any surdic numbers, both positive and negative,
in which cases this expression becomes an infinite series, if not by coincidence
the propounded series finally leads to vanishing differences; such series are
usually called algebraic, since in these cases one does not get to inexplicable
functions. Nevertheless, this expression found for the summatory term, if it is
an infinite series, is useless for differentiations and integrations; therefore, one
the principal task will be to find out, how, at least for certain cases, the found
summatory term can be transformed in such a way, that differentiations and
integrations are possible; I certainly explained many methods in my book
Calculi Differentialis in greater detail to do this, but the way I found them was
rather obscure. But using the method I will now explain all this can be done a
lot more easily.

§9 To the expression found for the summatory term ¥ : x add several
formulas contained in this general form

(n) + xAn 4+ X' AN’n+ x"Nn +etc.... — (x +n),

whose sums, since they are equal to zero, all, no matter how many were
added, together with X : x will nevertheless express the summatory term.
Therefore, successively substitute all the numbers 1, 2, 3, 4 etc. for n and
arrange the whole expression according to the vertical columns corresponding
to the values x, x’, x” etc. the following way:



GENERAL EXPRESSION FOR THE SUMMATORY TERM
x(1) + x'A1 + x"A%1 + %" A31 + etc.
+ (1) +xA1 + A1+ "N+ XA = (1)

+(2) +xA2 + A2 + A2+ XA L~ (x+2)
4+ (3) +xA3 +x'A23 +x"A3B +x"AB +... — (x +3)

+ (n) +xAn+ xX'Nn+xX"An+ X" A+ — (x4 n).

§10 Even though this expression is true without any doubt, it will neverthe-
less be extremely helpful to have proved it. For this, collect the single vertical
columns into one single sum; and the sum of the first will be

1)+ @) +3) + @) +...+(n) =Z:m,

The second column gives

X((1) + A1+ A2+ A3 +...+ An).

But because it is
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this whole sum will be contracted to

x(n+1).

In like manner, the sum of the third column will be

X (M + A1+ A3+ A ..+ A%n);



and since

A 1T=A2—-A1l, A2=A3-A2,..., Nn=An+1)—An,
that sum is contracted to

x'A(n+1).

In the like manner it is plain that the sum of the fourth column will be

x" A*(n+1)
and of the fifth
x’”AS(n +1)

and so forth. But the sum of the last column to be subtracted is

(x+1)+(x+2)+(x+3)+...+(x+n)=%:(x+n)—X:x.

§11 Therefore, the sum of all middle vertical columns not including the first
and the last is, as we saw,

x(n+1)+XAn+1) +x"A(n+1) +x""A3(n+1) + etc.

But because it is

x(1) + x'A1+x"A*1 +x""A%1 +ete. =X : x,

having augmented the single terms by the number n the sum of our series
will be

x(n+1) + XA +1) +x"A(n+1) +etc. =X (x+n) —Z:n

as a logical consequence the sum of completely all columns without the first is

=%:(x+n);

hence, if the sum of the last column, which is

i(x+n)—X:x,
is subtracted, the sum of the total expression will remain = X : x, this means
the summatory term in question.



§12 Here it might seem mysterious that we gave the value of the formula
Y. : x, which is expressed initially by a simple series, expressed in terms of
a chaotic collection of innumerable series; but soon the highest use of this
complicated form will become obvious, when we continue the number of
horizontal lines to infinity, what will happen, if we take an infinite number
for n, as we will explain now in more detail.

§13 Therefore, while n denotes an infinitely large number, the sum of the
second vertical column, which is x(n + 1), will contain the infinitesimal term
of our series; therefore, if it vanishes, then the sums of the following vertical
columns vanish even a lot faster, whence in this case it will suffice to have
kept just the first column together with the last in the calculation. But if the
infinitesimal terms do not vanish, but were equal to each other, then it will be
possible to neglect the third column and all the following ones. But further, if
just the second infinitesimal differences vanish, the first three vertical columns
must be kept in the calculation; and in like manner four, if just the third
infinitesimal differences vanish. Therefore, we will subdivide the series into
the following species according to this difference.

FIRST SPECIES OF SERIES WHOSE INFINITESIMAL TERMS
VANISH

§14 Therefore, as often as such a series is propounded, for its summatory
term it will be sufficient to consider only the terms of the first and the
last vertical column, and so we will obtain the following expression for the
summatory term

Xix=
“n + 2 + B + (4 + et
- (x=1) - (x=2) = (x—=3) — (x—4) — etc,
which will continue to infinity and converges the more, the smaller the index
x was, since, if it vanishes, the whole series will go over into zero or it will be

% : 0 = 0, which is true, of course; for, whenever the number of terms to be
added is zero, the sum must also necessarily be zero.



§15 But whenever the index x is a very large number, this series will certainly
hardly converge; but it will always be possible to reduce cases of this kind to
smaller indices. For, because it is

Yi(x+1)=Z:x+(x+1),
in like manner it will be
L:(x+2)=X:x+(x+1)+ (x+2)
and hence in general, while i denotes an integer number,
i(x4+i)=X:x+(x+1)+(x+2)+...+ (x+10).

Therefore, if the sum of x +i terms is in question, it will suffice to have
investigated the sum of x terms, this means ¥ : x, and this way one will be
able to reduce all questions of this kind to a case, where the index x in even
smaller than 1, in which case the series given for X : x before will converge
rapidly.

§16 Such a reduction is especially necessary, whenever the index x is a
negative number. For, because it is

it will be

and in the same way

Y:(x—=2)=X:x—(x)—(x—1)

and
Z:(x=3)=Z:x—(x)—(x—1)—(x—2)

and in general
Tix—i)=Z:x—(x)—(x—-1)—...—(x—i+1)

and this way, no matter how large the negative number x — i was, the resoluti-
on can always be reduced to X : x, so that it is x < 1.

10



EXAMPLE
Let this harmonic series be propounded

UL R S
273745 Ty T

whose sum of x is in question, where for x any numbers except for positive
integers can be taken, since for the cases, in which x is a positive integer, the
question is easily answered. Therefore, in this case from the form given before
it will be

XX =
1 + ! + ! + ! + etc.
2 3 4
1 1 1 1
Cx+1 _x+2_x+3_x+4_etc';

these two series will be contracted into this single one

__* L x % X

S ox+1 0 2(x+2)  3(x+3)  4(x+4)
the sum of these series is known, as often as x was a positive integer. So it
will be

X:x —1—4 + etc.;

ifx=1
1= 2 b L b,
2 2:3 34 4.5 5.6 v

ifx=2,
1yl 2 02 2 22,
2 1.3 24 3.5 4.6 5.7 v

if x =3,

3
ttats=1atastsetartsgtete
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if x =4,

{IFRLITAL VUL N I I S R I
234 1526 3.7 4.8 5.9

etc.,

which series are all very well known, of course.

§18 To understand these things better, let us construct the curve (Fig 1.), to
whose abscissa
Ox =x

this ordinate corresponds

xXy=y=2xX:x,

so that after having taken equal intervals of unit length on the axis Ox, namely
0,1;1,2; 2,3; 3,4 etc. the ordinates will be

F1G. 1
1...(1) =1,
1
2 (2):14—5,
1 1
3 (3)—1—|—§+§,
4 (4)—1—1—%—#%4—%
etc,;

and the equation between the two coordinates will be

12



x x x x
1 212 313 Tar 19
from this equation one will therefore be able to define all intermediate ordi-
nates; and it will even be sufficient to have taken values smaller than 1 for
x. So, if the ordinate - - - (3) corresponding to the abscissa 0--- 3 = 3 is in
question, one will find

y= + 1 + etc,;

LN (-0 [ SR I I I .
2°°°\2) 3 25 3.7 4.9 5-11 7
the sum of this series can be assigned by means of logarithms this way. Form
this series
2 £° t’ 7
y= 1.3+2.5+3_7+4_9+etc.,
which series therefore for t = 1 will give the value in question; but by
differentiating we will have
dy 2t 6
7_T+E+*+*+etc.

at 3 4
and by differentiating again
ddy 3,45, 47 t
— =t+t t t tc. = —.
202 +t+t + 1t +etc T
Hence it will vice versa be

dy tdt tdt
ay _ [y =2 / ar [
2dt 1—g ¢V 1—tt
which double integration can be reduced to a single one; after this reduction
it will be it "
=2t —2 .
Y / 1— 1t 1—t
But since one has to put t = 1 after the integration, it will be

tdt ttdt tdt
=2 - -2/ =2 .
Y /1—tt 1—tt 1+t

therefore, by integrating it will be
y=2t—2log(t+1)

and hence in our cases
y=2-2log2,

whose value approximately is 0.61370564.

13



§19 Now, having found the ordinate corresponding to the abscissa 3, of
course

Z:%zZ—ZlogZ,

from it and using formulas given above the following are easily derived, of

course
X <1+;>=§+Z:;,
X (2—1—;):;-1—;—%2:;,
s (1) o222
etc.

Even the preceding ordinates not expressed in the figure can be deduced from
the formula X : (x — i) we found [§ 16], namely from the formula

Ti(x—i)=Z:x—(x)—(x—1)—(x—2)—...— (x —i+1).

Therefore, since in our case it is x = %, the ordinate will be

Z:<—1):Z:;—2:—210g2,

2
it will be negative, of course. But having taken x = —1 it becomes infinite. It
will also become infinite in the cases x = —2, x = —3, x = —4 etc. But within

these intervalls it will be

1 1

Yi—(14+=)=2:=—2+2,
+2 > +

1 1 2
X — 2+§ = .§—2+2+§,

1 1 2 2
A —(3+2)—2 5_2+2+§+§

etc.

14



§20 Now let us differentiate the series found for the ordinate y and it will be

dy 1 1

- G2 @22t ¥

which series therefore expresses the tangent of the angle, in which the curve
element is inclined to the axis in y; hence it is plain that for an infinite abscissa
this inclination will be zero, or the curve will run parallel to the axis in the
infinite. But then for x = 0, the inclination of the curve at its origin will be

s+ 5 +etc,

1 1 1 T
=144+ -4+ — .= — =1.644
+4+9+16+etc G 6

and hence the angle will be = 58°42’. But then having taken x = 1, it will be

dy 1 1 1 1 Tt

where the inclination will be= 32°48’ and by going further the inclination will
continuously decrease.

§21 But by going backwards to negative abscissas we saw above that in the
cases, in which itis x = —1 or x = —2 or x = —3 etc., that the ordinates
become infinitely large and constitute the asymptotes of the curve. But on
the other hand saw we that in the same points it will be Z—Z = oo and there
the inclination of the curve is 90° or the tangents will be perpendicular to the
axis. Furthermore, since the series found for % always has a positive sum,
it follows that all parts of the curve always ascend going to the right, but
descend going to the left.

§22 We will even be able to perform an integration and to assign the area
under the curve from the origin to the ordinate x - y. For, from the first form
we were led to immediately it will obviously be

/ydx:
1

1
X + Ex + gx + etc.
—log(1+ x) —log(2+ x) —log(3+ x) — etc.
+ Const.,

15



which constant has to be determined in such a way that in the case x = 0 the
total arc vanishes; hence, it will be expressed this way

/ydx:

x + 1x + 1x + etc
2 3 ’

—log(1+ x) —log <l + ;x> —log (1 + ;x) — etc.

Therefore, since it is

log (142 —E—L2+L3—L4+etc
& n) n 2n2  3nd 4nt v

the expression given above can be expressed in terms of the following series

+ i ad + ad X + il etc
2 3 4 5 6 ‘
+ - - « + ¥ - - + i —etc
2.4 3.8 4-16 532 ' 6-64
N S N X N 0 .
2.9 3.27 " 4.81 5.243 ' 6.729 ¢
x2 X3 x4 x5 x6
-+ — etc.tetc.

216 3.64  4.256 5.1024 6409

16



§23 Now, if we collect these columns vertically, we will have

/ydx:

+;x2<1+i % +% +£ +etc> +0.822467x>
;x3<1+; §+ 6174 +1125+etc>:—0400685x
+411X4<1+16 8171 + ﬁ + 6;75 —|—etc> +0.270581x*
%XS <1 S % + 10% + % —|—etc> — —0.2073851°
+ etc.

Now let us put x = 1 that the area O1(1) results [Fig 1.]; and since the decimal
fractions given here hardly converge, note that the sum of any arbitrary series
whose signs alternate, of course

s=a—b+c—d+e—etc,

can be expressed by means of continued differences that it is

1 1 1., 1 5
EQ_EA —I—SAa—EAa%—etC

using this formula the calculation can be done the following way:

—A +A2 —A3 +A4 —A° +A° —A? +A8
0.822467
0.421782

a)
)|0.400685 0.291678
)
)

=y

0.130104 0.224770
0.207385 0.066908 0.183230
0.063196 0.041540 0.154737
0.207385 0.025368 0.028493 0.133936
0.037828 0.013047 0.020801 0.118072
)10.169557 0.012321 0.007692 0.015864 0.105564
0.025507 0.005355 0.004937 0.012508
)|0.144050 0.006966 0.002755 0.003356
0.018541 0.002600 0.001581
)10.125509 0.004366 0.001174
0.014175 0.001426
)|0.111334 0.002940

0.011235
)0.100099

QU 0

(8N

~

= 09

-~
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§24 The upper numbers of these columns, the first of which was taken from
Calculi Differentialis chapter VI part II on page 456, refer to the first term a
together with its continued differences; the second one while going down
the column give the term b with its differences, the third ones ¢ with its
differences. Since now the most upper terms hardly converge, let us actually
add the first two a — b and it will be 0.421782; but let us compute the sum of
the following ¢ —d + e — f + etc.
1 1 1

1
i1 v 3
= 2c 4Ac~|—8Ac —16A c + etc.

according to the given rule and it will be

+ %c = 0.135290

— iAc = 0.015799

+ éAzc = 0.003171

— %A% = 0.000815
1 4

+ 3—2A ¢ = 0.000240

— 614A5c = 0.000077
1

+ @Aéc = 0.000026

—/eqq = 0,000010

Sum = 0.155428

a—>b = 0.421782
Area = 0.577210

But I hope that the more detailed expansion of this rather remarkable curved
line did not seem to be out of place for anybody, especially because the
equation for this curve extends to inexplicable functions and therefore this
digression to a special case is to be considered to be helpful for our goal.

18



SECOND SPECIES OF SERIES WHOSE FIRST INFINITESIMAL
DIFFERENCES VANISH

§25 Therefore, all series extend whose infinitesimal terms are equal to each
other to this species. Therefore, to express the summatory term, X : x, of these
series, it will only be necessary that the terms of the second vertical column of
the general form exhibited in § 9 are added to the expression of the preceding
species; the most upper term of that is to be exhibited separately; and since
the single horizontal columns consist of three terms now, the summatory term
in question X : x will be defined by the following three series

Yix =
+ (1) + (2) + (B) + (4) +etc
+x(1)+ xAl + xA2 + xA3 + xA4 +etc
—(x+1)—(x+2)—(x+3) — (x+4) —etc;

which form because of

Al=(2)— (1), A2=(3)—(2), A3=(4)—(3) etc

is reduced to this one

Xix =
+(1-x)1)+1-x)2)+(1—=x)(3) + (1 —x)(4) + etc.
+x(1)+ xA1 4+ xA2 + xA3 + xA4 Hetc
- (x+1) — (x+2) — (x+3) — (x+4) —etc;

which series converges the more the smaller x is. But above we taught that all
these cases can always be reduced to the one where x is fraction smaller than
1.

§26 Now let us at first consider the simplest case, in which all terms of the
series are equal to each other, namely (x) = a; for, it is plain immediately
that the summatory term is ax which same value our expression will give
immediately. For, it will be 2 : x = xa.

19



§27 Now consider the case, in which it is (x) = x—il so that our series is
2 3 4 x+1
ZX—I+§+§++ + etc,,

whose infinitesimal terms are all equal to 1. Therefore, our formula will give
us

Yix =
2 3 4
+(1—x)'1+(1—x)-§+(1—x)-§—|—etc
+2x+ x §+ X é+ X §Jretc
2 3 4
x+2 x+3 x+4
— — — —etc,,
x+1 x 42 x+3

whence it is plain that for x = 1 it will be X : x = % ; but for x = 2 it will be

Xix=
2 3 4
—1-1—1-5—1-§—etc.
3 4 5
3 4 5 ’
2 3
—4- 42
l+2

§28 This case can indeed easily be reduced to the preceding species. For,
because the general term is (x) = *t!, having resolved it into parts it will
give (x) =1+ % ; therefore, form two series, the first for the general term 1,
the other for the general term 1, and these to series taken together will give
the sum in question X : x; of course, it will be

Yix =

20



+1+1+1+1+...4+1
1

T PR
273" 4" T

Now the sum of the upper series is x, the sum of the lower on the other hand
can be expanded by means of the first species and one will hence have

Yix =
x+ 1 + ! + ! + ! + etc
2 3 4 ’
1 1 1 1 ‘
— — — — — etc.,
x+1 x+2 x+3 x+4

which expression is a lot simpler than the preceding one, but it nevertheless
exhibits the same value. So, if one takes x = %, the first expression will give us

Lix=

L1213 14 15

2'172°272'372°47°F

Flb s o it et

22 23 24 25
A
3 5 7 9 °F
and having collected the terms in order it will be

woioy Loy - + bl et
2 3-4 5-12 7-24 9-40 11-60 7

whose structure will become clear considering the following form

seloqp ot .t 0t 1 Ly
‘2 " T1347256"3.7.874.9.10 '5-11-12 ' ¢

The other expression on the other hand gives this series

2

1
2
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Tiralililie
2 2 3 4
2 2 2 2
T3 5 7 9 °¢

1 1

1 1
§+2'5+3'7+4'9+etc.

§29 From this example it becomes clear that the series deduced from the
second species converges more than the last derived from the first species;
hence it will worth one’s while to consider the convergence of the first series
with more attention. Any arbitrary term of this series results from these three
parts

1n+1 1 n+2 2n+3

2 n 2 n+1 m+1

since they approximately mutually cancel each other, the sum of the first two
will be equal to the third, whence this rather remarkable formula follows

n+l n+2 2(2n+3)
n n+1  2n+1
which comes the closer to the truth the greater the number n was. Hence
subtracting 2 on both sides it will approximately be

7

1 1 4

E+n+1 :Zn—i—l'

§30 But such a reduction to the first species is always possible, whenever the
propounded series finally converges to a finite value; but if the terms of the
series increase to infinity, this reduction cannot be done anymore and hence
one will necessarily have to recur to the second species. Such a case is the one,
in which it is (x) = y/x; for, while 7 is an infinite number the two contiguous
infinitesimal terms will be v/ and v/n + 1, whose difference is ﬁ and hence
vanishing. Therefore, in this case our series will be

Yix=V1+V2+V34+Va+ .+

22



Therefore, hence by means of the given prescriptions we will have this expres-
sion
Yix=

+(1=x)V14+ (1 —x)V2+ (1 —x)V3+etc
+x+ V2 + /3 + x4 +etc
- Vx+1 — Vx4+2 — Vx+3 —etc;

let us see in the case x = %, how much this series converges and it will be

1 1 1 1
+§\/T+ E\fz‘f’ E\@‘i‘ Eﬂ—i—etc.

1 1 1 1 1

2 2 2 2 7

and having collected the terms the arbitrary one will be

1 1 —— 2 1
§ﬁ+§ 1’l+ - nz_‘_ 7

which has to come the closer to zero the greater the number n was, whence it

will approximately be
Vn+vn+1=,/22n+1).

For, having taken squares we will have

2n+1+4+2y/n(n+1)=22n+1)

and hence

2¢/n(n+1)=2n+1.
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Having squared both sides once again it will be

dnn +4n = 4dnn +4n + 1;

the ratio of both sides of that equation certainly is approximately 1. Further-
more, it deserves to be mentioned here that the true values for the fractions
assumed for x are transcendental of such a degree that they cannot be expres-
sed by means of any analytical formulas. Any arbitrary value assumed for x
will even belong to a peculiar kind of transcendental quantities.

§31 But before we leave this species let us add this extraordinary theorem
on the convergence of these formulas which is much more general than the
one which we stated just before.

THEOREM

The following equality

(ﬁ—a)W+a(/mzﬁ</ <n+g>v

will come the closer to the truth the larger the number n is, and at the same the
the smaller the fraction % was, if just the exponent % was smaller than 1. But for a
negative v this equality

p—a o P
—+ =
v
v (1) {(n+5)
without the last condition will come the closer to the truth the larger the number n

and the smaller the fraction & was. Under the same conditions by means of logarithms
it will even approximately be both

(B—a)logn+walog(n+1) = Blog <n—|— ;)
and

p-a & _ B
logn  log(n+1) log (n+%)
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PROOF

§32 This theorem follows from the general solution given for this species
whose arbitrary term consists of these parts

1—=x)(n)+x(n+1)— (n+x)

and becomes the smaller the larger the number 7 is taken while x is a fraction
smaller than 1. If we now put x = % and (x) = {/xV and hence also (1) = {/nV,
it is necessary that it is % < 1, since otherwise the infinitesimal terms would
not have vanishing differences. But these substitutions yield the first formulas
given in the theorem. But whenever the fraction % is assumed to be negative,
then the propounded series will even be contained in the first species, since
the infinitesimal terms become zero.

§33 To understand the power of this theorem, it will helpful to have noted
that these formulas are completely correct in four different cases; the first of
them is the case, if « = 0; the second, when a = B; the third the one, in which
it is v = 0; finally, the fourth, if n is an infinite number. Furthermore, a fifth
case is given, in which in the first formula it is p = v or {/n¥ = n.

THE THIRD SPECIES OF SERIES IN WHICH JUST THE SECOND
INFINITESIMAL DIFFERENCES VANISH

§34 Therefore, this will happen, as often as the infinitesimal terms themselves
constitute an arithmetic progression; therefore, the formula found for X : x
before in the species treated above will be accommodated to this case, if
additionally the single terms of the third vertical column (of the general form
exhibited in § 9) are added. This way the summatory term will be expressed
the following way

YXix=
+ (1) + (2 + B) +...+ (n) +etc
+ x(1)+ xA1 + xA2 + xA3 +...4+ xAn +etc
+2'A1 + XA+ XA%2 + A3 4.+ XA’n +ete
—(x+1)—(x+2)—(x+3)—...— (x+n) —etc.
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§35 Now let us change this expression to a more useful form; and at first let

us write the actual value 5 instead of x'; then, because of

An=(n+1)—(n)

and

Nn=n+2)—2mn+1)+(n)
having substituted these values the last column of the preceding formula will
go over into this form

XX — X

(n) + x (n+1)+ 5 (n+2)
- x(n) — (xx —x)(n+1)
XX — X
—0

which terms collected will yield

xx —3x+2 XX — X

5 (n) — (xx —2x)(n+1) + (n+2).
Therefore, for the sake of brevity let us put
— 2 —
%:p, xx —2x =¢q and xxzx:r

and the summatory term in question will be expressed in the following form

Yix =

+p(1) —q(2) +7r(3) - (x+1)
+p(2) —qB3) +r(4) — (x+2)
+p(3) —q(4) +r(5) — (x+3)
+ etc.,

which series already converges rapidly.
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§36 Therefore, we can hence derive a new theorem similar to the preceding
one but extending a lot further by putting as before

where it already suffices that the exponent % is smaller than two; and it will
even be possible to take negative exponents.

THEOREM

This equality

(wa — 2aB +2BB) V/nY — (2ax — 4ap) {/(n+1)" + (e —ap) {/ (n +2)"

—25ﬁ§/

will come the closer to the truth the larger the number n is taken and the less the
fractzon differs from 1, as long as ~ 14 is smaller than two. But than having taken a
negative ]4 in the most cases it will a lot more accurately be

Mc—3tx,3+2/3ﬁ_2zxoc—4ac,8+ o —af 2BB
) e )

One will even be able to take logarithms for the formulas containing roots.

§37 The formulas in this theorem are exactly true in these four cases

1°) a=0, 2°) a=p, 3° v=0 and 4°) n=oco.

Furthermore, the same happens, whenever in the first form it is either v = u
or v = 2y so that it is {/nv or n or nn. Therefore, we have six cases, in which
this theorem does not deviate from the truth; hence, it is easily understood
that in all remaining cases the error cannot be notable.
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§38 We can also generalize this theorem even more by writing # instead of
n and multiplying by a respective power of c everywhere, to get rid of the
fractions. And so the first formula will become

(aa — 3ap +2BB) V/nv — 2aa — 4oc,B (n+c)v

+(aa —aB){/ (n+2c)" = 2BB n+ M

but the other formula only deviates from this one in that regard, that roots
occur in the denominator, which is also to be understood for logarithms.

§39 It will be worth one’s while to have illustrated these theorems by some
examples. Therefore, take & = 1 and B = 2 and the equalities exhibited in the
theorem will become

B/ +6{/(n+) = {f(n+20) =8 <n+C>V'

5, 6 1 _ 8
Ynt o Y+ Y+ W Ly

Let us apply the first form to logarithms and it will be

3logn + 6log(n +c) —log(n +2c) = 8log (n + ;c>

Now, let n = 10 and ¢ = 2 that it results
3log10 + 6log12 —log4 = 8log11.

After the expansion it will therefore be

3log10 = 3.0000000 log14 = 1.1461280
6log12 = 6.4750872 8log11l = 8.3311416
94750872 = 9.4772696,

whose difference is 0.0021824, which would have resulted a lot smaller, if we
had attributed a larger value to the number .
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§40 It is especially convenient to note especially about the summatory term
of the propounded series that so the differentiation as the integration can be
done easily with respect to the index x as a variable, as it was already shown
in the first species in more detail, where the summatory term X : x itself was
considered as the ordinate of a certain curve, while the x is the abscissa; and
in this sense I considered inexplicable functions in Calculi Differentialis

§41 But using the general formula for the summatory term X : x given above
let us also expand the case of the harmonic series here, in which it is

1
3

and let us ask for its value corresponding to the index x = % ; and because of
(x)=1and

1 1 1
Tix=1+= =
x=1+s+3+ 7+t

we will then have

1 5 1

2 8 16

3 3 1 3
+ g +E+ g +3—2+etc

3 1 3 3
+ g + Zl +T6+%+etc

1 1 1 1
T4 3 a m

2 2 2 2
————————— etc.
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or it will be

0
™
N =
I

+
+
+
@
a

_|_
— RN W WM

+
LRI~k NI R W
+
Bl Wiy NIW
+
— Q1IN =W
+
@
-
o]

Let us collect the single columns into one single term and it will be

smilo2y 6 6 6 . 0
"2 2"1.2.3.3 2345 3.4.57 4569

+ etc.,

which series certainly converges more rapidly than the one we found in the
second species.

§42 But if we do not contract the terms, but collect those, which have the
same denominator, having omitted the lowest series, we will have

1 3 9
TN Y (I I I T
3 4 5 6 7

or by writing

16 1—Fl—kl—kl—ketc
6 8 10 12 '

instead of the upper series we will have

113 11,1 11 11 1
272 4 3 56 7 8 9 10 11
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Let us add the following expression on both sides

lo 2—1—1+1—1+1—1+etC'
8= 752737175 5 v

it will be 113 111

as a logical consequence it is
Z . 1 — 1
) 2 0g 2,

which value agrees extraordinarily with the one which was given in the first
species.
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SUPPLEMENT
ON INEXPLICABLE FUNCTIONS OF THE FORM:
§1 Here the factors A, B, C, D etc. are terms of a certain series corresponding

to the indices 1, 2, 3, 4 etc. and X is the term corresponding to the index x;
but I will denote the factors corresponding to the following indices

x+1, x+2, x+3 etc
by X', X", X""'. Hence it is immediately plain that it will be

M: (x+1)=X"-1I:x
and

IM: (x+2)=X"-X"-T:x
and so forth. But the preceding ones will be

IT: x
X

IT: (x—1) =

etc.

Hence it is understood that it suffices to have assigned these formulas only
for values of x smaller than 1.

§2 As often as x was a positive integer the values of IT : x will result directly.
For, it will be

IT:1=A, I1:2=AB, I1:3= ABC etc

But whenever x is not a positive integer the product we denoted by this
character I1 : x will be an inexplicable function of x, if not coincidentally
the factors A, B, C, D etc. were of such a nature that the preceding ones are
cancelled by the following ones, as it happens, e.g., in this form
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since here it obviously is

1
I1:x =
X x+17
or also in this example
3 8 15 24 xx +2x
IT:x=-- -+ — . —..... PSGE———
4 9 16 25 (x+1)2
For, hence it will be
3 2 4 5 5 3 6
H.l_ﬁ, H-Z_g_ﬁ, H.3—g—ﬁ, H‘4_g_ﬁ,
I1:5=— .
5 56 etc.,

whence it is plain that it will be in general

x+2

Hix:m.

§3 But the inexplicable cases will be reduced to the ones in the preceding
dissertation by taking logarithms

logIl: x =logA+logB+logC+...+1logX;
this form compared to the one treated above will give us the following values
Y:x=logll:x,

(1) =1logA, (2)=1logB, (3)=1logC etc. und (x)=1logX;
but then it will be

(x+1)=logX', (x+2)=logX" etc;

and having observed this agreement let us apply the species treated above to
the present case
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FIRST SPECIES WHERE THE LOGARITHMS OF THE INFINITESIMAL
FACTORS VANISH OR WHERE THE INFINITESIMAL FACTORS ARE EQUAL
TO UNITY

§4 Therefore, since for this first species, having introduced the values just
given, we have

logIl:x =
+logA +logB +logC +logD + etc.
—log X' —log X" —log X" —log X"V — etc.,

by ascending to numbers it will be

' A B C D

H'x:?‘ﬁ.ﬁ‘x////‘

Here, I add no examples, since many are already expanded in Calculi Differen-
tialis.

etc.

THE SECOND SPECIES WHERE THE INFINITESIMAL FACTORS ARE
EQUAL TO EACH OTHER

§5 For, then their logarithm will also be equal to each other and hence the
differences will all vanish. Therefore, let us apply the formula found above in
§ 25 to this and it will be

logIl:x =
+(1—x)logA +(1—x)logB +(1—x)logC +etc.
+xlogA+ x logB + x logC + x logD +etc
— log X' — log X" — log X" — etc.,

whence by ascending to numbers we will have

Alfx . BX Blfx .Cx lex . DX

IT:x=A" X/ X/ X"

- etc.
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THE THIRD SPECIES, WHERE THE INFINITESIMAL TERMS CONSTITUTE A
GEOMETRIC PROGRESSION

§6 For, then the logarithms of these terms will constitute an arithmetic
progression, whose second differences will therefore vanish. To apply the
expression found above in § 35 to this case, it is to be noted that for the sake
of brevity it was put

_xx—3x+2 xXx —x

> , gq=xx—2x and r= 5

whence we will have

logIl:x =
+plogA +plogB +plogC +etc.
+3x—xx logA —qlogB —qlogC —glogD — etc.
XX — X
+ logB +7rlogC +rlogD +rlogE +etc

2
— logX' — logX"— logX" — etc.
Put further let us put here for the sake of brevity

xx—3x_m and xx—x_n'
2 o 2

and by ascending to numbers we will have this expression

B" APC' BPD" CPE
WX = Bix cix? DIX"

- etc.

§7 This way I am confident to have exhausted the doctrine on the inexplicable
functions, which was not explained sufficiently accurately and clearly in Calculi
Differentials, almost completely, so that nothing more can be desired; but this
seemed to be even more necessary, since this subject is almost completely new
and was treated by nobody. But its use is especially great in the interpolation of
series and hence the properties of curved lines, whose ordinates are expressed
by means of inexplicable functions, were to be investigated.
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